

HOME SEED STORAGE FOR HAWAI'I'S GARDENERS

Alvin Y. Yoshinaga

Center for Conservation Research & Training

University of Hawai`i-Manoa

(retired)

alviny@hawaii.edu

24 March 2012

HOME SEED STORAGE FOR HAWAI'I'S GARDENERS

SLIDE SHOW: Scientific Principles of Seed Storage

LECTURE: Practical home seed storage

Techniques

Equipment

DEMONSTRATION: How you can store seeds at home

TIME FOR QUESTIONS: At the end of the Demonstration

MORE QUESTIONS? I'll be here tomorrow

ORTHODOX SEEDS (tolerate extreme drying)

- Tolerate drying to low moisture levels (2-5% of wet weight)
- Longevity increases as moisture level decreases
- Tolerate low temperatures, can be frozen
- Longevity increases as temperature decreases
- Often long-lived

RECALCITRANT SEEDS (do not tolerate drying)

- Intolerant of drying
- Seeds die if moisture level is reduced to less than 12-31% of wet weight
- Intolerant of low temperatures
- Lose viability rapidly after ripening

INTERMEDIATE SEEDS (tolerate some drying)

- Tolerate drying, but only down to a critical moisture level
- Tolerate some low temperatures, but not freezing
- Short to medium term storage is practical

DISTRIBUTION OF SEED STORAGE BEHAVIOR

	Worldwide		Tropics only	
ORTHODOX	9406	(93.2%)	278	(70.2%)
INTERMEDIATE	145	(1.4%)	9	(2.3%)
RECALCITRANT	543	(5.4%)	109	(27.5%)
UNCERTAIN	531			

Total 10,645 species 396 species

Sources:

Worldwide: Flynn, S., Turner, R.M., and Stuppy, W.H. 2006. Seed

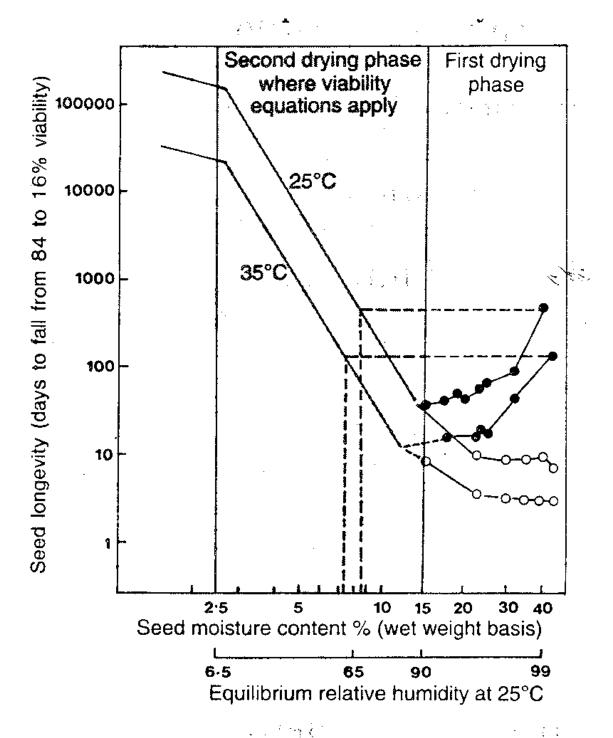
Information Database (release 7.0, October 2006)

http://www.kew.org/data/sid.

Tropics only: Tweddle, J. C., J. B. Dickie, C. C. Baskin, and J. M. Baskin. 2003. Ecological aspects of seed desiccation sensitivity. J. Ecol. 91: 294-304.

Table 1. Factors by which longevity is altered by a difference of 1% moisture content in barley (Hordeum distichum L.) and onion (Allium cepa L.) seeds.

Moisture content	Factor by which longevity is altered*		
range in % fr.wt.	Barley	Onion	
4-5	3.70	2.17	
5-6	2.92	1.88	
6-7	2.47	1.71	
7-8	2.19	1.59	
8-9	2.00	1.50	
9-10	1.86	1.44	
10-11	1.75	1.39	
11-12	1.67	1.35	
12-13	1.60	1.32	
13-14	1.56	1.29	

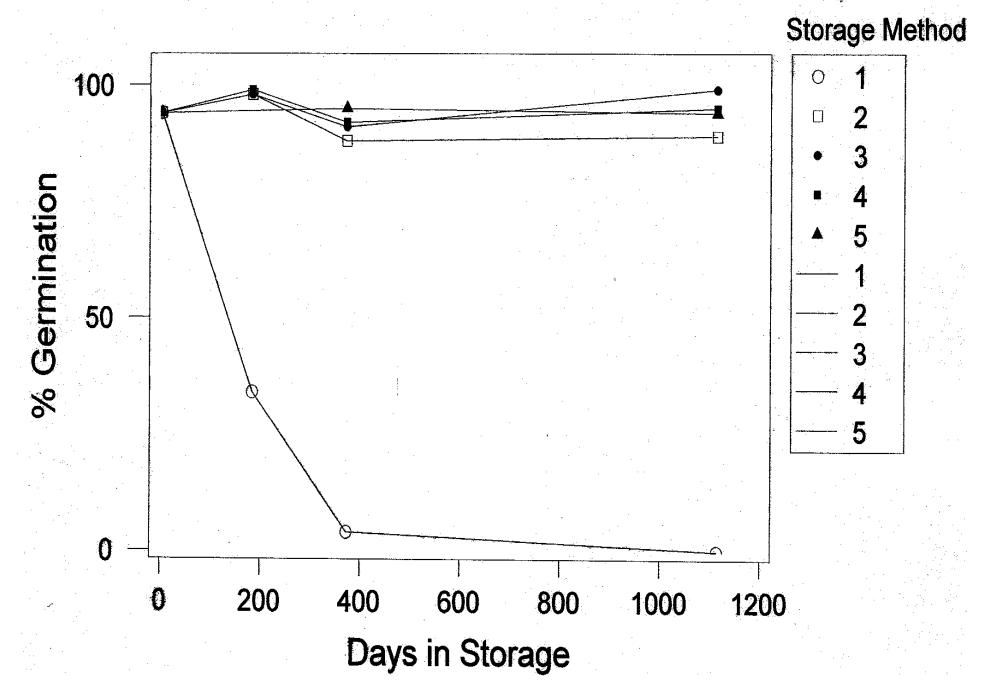

For a decrease in moisture content over the ranges indicated, longevity is increased by the factor indicated; for an increase in moisture content over the ranges indicated, longevity is decreased by the reciprocal of the factor indicated. E.g. when drying a seed lot of non oily seed in store from 10 to 6%, moisture content will approximately increase the longevity by 1.86 × 2.00 × 2.19 × 2.47 = 20 times.

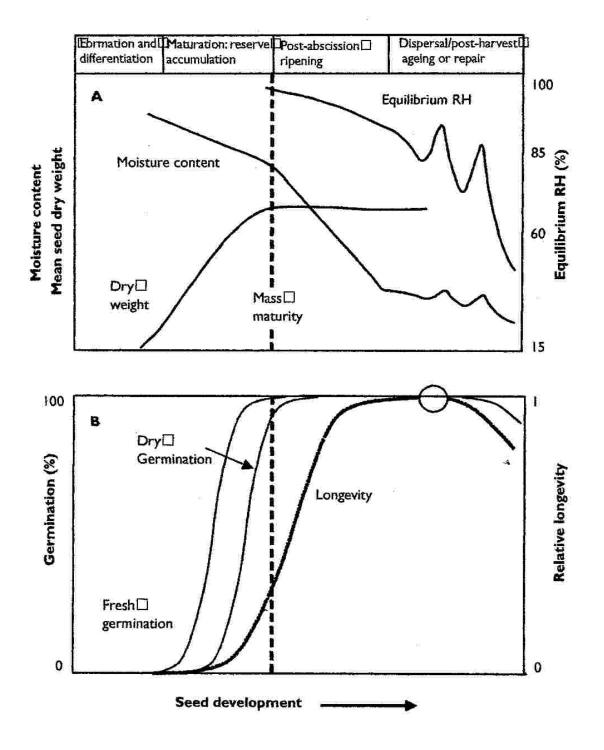
E.g. if it took the seed lot at 10% moisture content 2 years before the germination percentage fell to 70%, it would stay approx. 40 years in the same store before the germination percentage fell to 70% if the seed lot had been dried to 6% moisture content.

Table 2. Factors by which longevity is altered by a difference of 5°C mean storage temperature in barley and onion seeds.

Temperature range	Factor by which longevity is altered in barley and onion*
0-5	1.48
5-10	1.71
10-15	1.79
15-20	1.88
20-25	1.97
25-30	2.08
30-35	2.18
35-40	2.29
40-45	2.41
45-50	2.53

^{*} For a decrease in temperature over the ranges indicated, longevity is increased by the factor indicated; for an increase in temperature over the ranges indicated, longevity is decreased by the reciprocal of the factor indicated. E.g. lowering the temperature 5°C with an air conditioner will approximately double the longevity. Storing in a cold store instead of under ambient conditions (lowering the temperature from 25°C to 5°C) will multiply the mean viability period by 1.97 x 1.88 x 1.79 x 1.71 = 11.




PREDICTED SEED LONGEVITY IN STORAGE

TEMPERATURE (Deg. Celsius)

SEED MOISTURE LEVEL BY WEIGHT (wet basis)	25 ° (ambient)	5° (refrigerated)	-18° (frozen)
15 % (air-dried in HI)	1.0	8.8	-
8 % (USDA recommended moisture level)	16.2	143	587

Viability of HEDYOTIS TERMINALIS (manono) seeds after storage

INSIDE THE SEED VAULT AT 0° F/-18° C

BARLEY (middle shelf) and RICE (lower shelf) in frozen storage

LOOKING INTO THE ACCESS PORT OF A CRYOGENIC STORAGE TANK

The End

HOME SEED STORAGE FOR HAWAI'I'S GARDENERS

SLIDE SHOW: Scientific Principles of Seed Storage

LECTURE: Practical home seed storage

Techniques

Equipment

DEMONSTRATION: How you can store seeds at home

TIME FOR QUESTIONS: At the end of the Demonstration

MORE QUESTIONS? I'll be here tomorrow

GUIDELINES FOR SUCCESSFUL SEED STORAGE

- 1. Determine whether the seeds can be stored. (Not all seeds can be stored successfully.)
- 2. Collect healthy, ripe seeds.
- 3. Separate and clean the seeds.
- 4a. Dry the seeds to the correct moisture level for storage.
- 4b. Meanwhile, germinate some of the seeds to make sure that they are good.
- 5. Pack the seeds for storage.
- 6. Store the seeds.
- 7. If you store the seeds for a long time, germinate a sample from time to time to make sure that they are still good.
- 8. Prepare the seeds for sowing: Seeds stored very dry need preparation before sowing.
- 9. Sow the seeds.

While going through all of these steps, keep good records.