History of Seed Production and Breeding in Hawaii

Héctor Valenzuela UH-Manoa

hector@hawaii.edu http://www2.hawaii.edu/~hector/ http://www.ctahr.hawaii.edu/organic/

History of Breeding and Seed Program at UH

- 1918, sweetpotato, head lettuce, Cheung
- WWII Victory Gardens
- 1940s- formal breeding work WA Frazier
 - **'Pearl Harbor' tomato 1945**
- 1940s- tomato, Hawaiian Wonder pole bean,
 'Line-5' Solo papaya, Tomatoes, 'Niihau',
 'Kauai', 'Oahu', 'Maui', 'Lanai', 'Molokai',
 'Hawaii'

History of Breeding and Seed Program at UH

- 1950s, Anuenue lettuce, Onolena sweetpotato Anahu tomato, Puakea cauliflower, Manoa sugar pea (powdery mildew), N-tomato hybrids, Kulanui head lettuce,
 1960s- Awahia onion (pungent),
 - Healani tomato, sweet corn, soybean, Hawaii Long eggplant, Manoa Wonder pole beans,

History of Breeding and Seed Program at UH

- 1961- tomato varieties with resistance to 8 diseases, Nematodes
- 1962- multiple disease resistance in sweet corn
- 1970s- Hawaiian Supersweet No. 9, sweet corn, Waimanalo Long eggplant, Poamoho pole bean
- Pele and Waimea potatoes (late blight)

UH Tomato: some Disease resistance traits

- Root-knot nematode
- Tomato Spotted Wilt Virus
- Fusarium Wilt
- Stemphylium leaf spot
- Cladosporium, leaf mold
- Spider Mites
- Short internodes

People in the UH Breeding Program

- Tex Frazier, corn, tomato, Oregon
- Jim Gilbert, tomato, cauliflower, cucumber soybeans, onions, pyramid disease resistance
- Jim Brewbaker, sweet corn, field corn
- Jack Tanaka, sweet potatoes
- Frederick Krauss, cover crops, Production
- Yukio Nakagawa, Veg Specialist
- Dick Hamilton, Fruits, explorer

Growers and Extension Agents: backbone of UH breeding programs

- Eggplant- Nitta Eggplant, Mr. Nitta
- Green Onion- Koba (selection from Japan)
- Kay Choy, Hirayama, white rust resistant (from Molokai, selection)
- Basil Fusarium resistant (Hamasaki)
- Maui Sweet onions (Ted Hori, Shimabuku, variety selection, crop management)

Seed Program at UH

- Initiated 1960 (Gilbert), Seed Distribution
 Program
- Funded by legislature 1969
- 7 hybrids, 16 vegetable varieties and Papaya
- Seed production on all islands; papaya on Kauai
- Need a Vegetable Breeder at UH
- Need a Seed Specialist

Seed Programs

- Public, Government
- Private (narrow germplasm)

Artisanal or Informal (*diverse germplasm*) Home-gardening Indigenous Community

Decline of Public Breeding Programs

- decline over past 40-50 years
- Nationally and in Hawaii
- Land-grant universities shifted to produce 'products' that were more profitable, royalties, patents
- less classical breeders, more molecular biologists

Alternative Breeding Programs

- Public breeding initiatives, participatory models
 eg Organic Seed Alliance & Cornell
- Plant breeding clubs
- Seed Saving Networks

Hawaii Statewide Seed Assessment

SurveyMonkey.com

N= 128 responses

Farm Size in Survey

Range= 0-250 Acres
Most farms= 1 Acre
Average size= 10 Acres
Larger farms= 250, 195, 75, 10-20

Environmental Conditions in Farm

Frequency mentioned

• Rainfall- 9,15, 30.. 100s, 125, up to 180"

- Elevation- sea level, range 200 to 1000s, and 1000-3000 ft
- Temperature minimums- 30s to low 80s
 - Temp. maximums- low 80s to mid 90s

Breeding in Hawaii important for Food Security?

Experience Producing or Saving Seed?

Years of Experience Saving Seed

- Range 1-50 yrs
- Average= 10 years
- median= 5 years
- Less than 3 years= 43%

Have You conducted crop improvement, breeding?

Seed Saving Skills?

Information Needs on Seed Saving?

- Isolation distance (65%)
- Population size (77%)
- Seed maturity, harvest time (76%)
- Harvest guidelines (51%)
- Processing and storing (58%)
- Roguing guidelines (63%)

Interest on Public Seed Initiative? List of Top Activities

- Saving Seed, personal use
- Restoring seed of Heritage or traditional Hawaiian Crops
- Seed exchange programs
- Attending advanced Seed Saving Class
- Participating in Variety Trials
- Attending class on crop Improvement

Crops, success in Seed Production

Frequency mentioned

- No. 1. N= 46, beans, brassicas (kale), lettuce, Native, papaya, pumpkin, sweet corn, tomato
- No. 2. N= 45, arugula, basil, beans, cilantro, corn, ginger, herbs, cucurbits, papaya, tomato,
- No. 3. N= 54, basil, beans, dill, edible hibiscus, green onions, lilikoi, maile, potato, sesame, tobacco, flowers

Crops, most difficult for Seed Production Frequency mentioned

- No. 1. N= 35, awa, basil beans, pepper, broccoli, onion, carrots, native, corn, cucurbits, lettuce, papaya, lettuce, ornamentals
 - Most mentioned overall: arugula, beets, broccoli, cabbage, carrot, chard, corn, kale, lettuce, onions, pepper, cucurbits

Goal of Variety Trials

•Expression of the plant due to genetics or to the environment

ID varieties adapted to the land (replace inputs with well adapted varieties)

Experimental Design

 Observational (non-replicated) trials: screen varieties, evaluate sources, check trueness to type

VS

- Replicated trials
 - (results are not due to environment alone)

Population Numbers to assess genetic variability

- Corn 30
- Brassicas 30
- Carrots 50
- Radishes 50
- Tomatoes/pepper 10
- Squash, cucumbers 10
- Beans 30

(source: OSA Farm Variety manual)

Consistent Treatments

- Growing seedlings
- Transplanting/planting
- Irrigation
- Cultivation
- Fertilization
- Pest management
- Harvesting

Trial Evaluation

- Log sheet
- scoring (index) vs measuring
 Scoring may be more valuable
 and quicker-
- All on same date, scoring system
 Scale of 1-9

(1= least, 9= most desirable),

Collaborative Research Trials

Hawaii Trial Network, on different islands to compare several microclimates and production niches; trial database with trial network to follow performance on different microclimates.

(Micaela Colley, HI Public Seed Conf. 2010)

- Lettuce
- Tomato

Tomato response to Nitrogen

Heirloom vs New Hybrid varieties, response

Leafies response to Phosphorus

Import Replacement: Romaine Lettuce Variety Trials

Seasons: Winter, Spring, Summer

Locations: Oahu, Molokai, Lanai

Seed Source:

Hazera, Johnny's, Nunhems, Orsetti, Rijk Zwaan, Seminis, Siegers, Syngenta, Western Pacific Seed

cv Lital (Hazera) (Spring, cooler months, light green foliage)

cv Concept (Johnny's) (Summer Poamoho)

cv Brave Heart (Seminis) (Molokai, Spring, cooler months)

Bamby (Johnny's) (baby, specialty, cooler?, Waimea)

