Nutrition for Garden Teachers

The Big Picture

*What are the most important food principles in today's world???

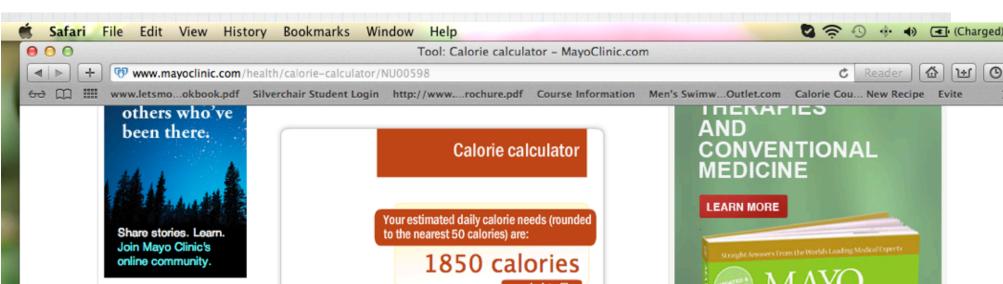
Michael Pollan

*Eat food, not too much, mostly plants

Eat from the Rainbow

- *Whole Foods
- *Taste
- *Fresh

healthy plate

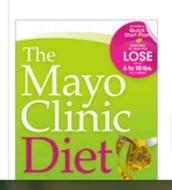


Food Quality

- *How many ingredients?
- *Where is the food from?
- *Preparation?

Basic Needs

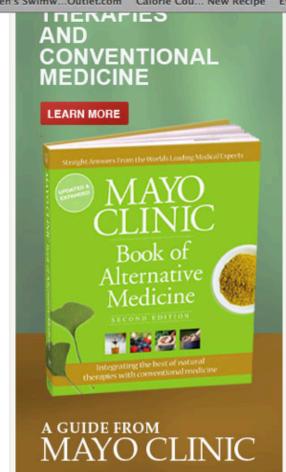
- * Calories
- * Protein, fat and carbohydrate
- * Vitamins and minerals
- * Fluid and fiber


Free E-newsletter

Subscribe to Housecall

Our weekly general interest e-newsletter keeps you up to date on a wide variety of health topics.

Sign up now


Credits: Based on Harris Benedict Equation and Dietary Reference Intakes, Institute of Medicine (IOM), 2005. Adapted by Mayo Foundation for Medical Education and Research.

Privacy assurance: Information that you enter won't be saved or sent to any Web site.

Mayo Clinic products and services

Book: Mayo Clinic on Digestive Health

Coo Aloo

Mayo Clinic Store

Check out these best-sellers and special offers on books and newsletters from Mayo Clinic.

- Try Mayo Clinic Health Letter FREE!
- Living with chronic pain? Mayo Clinic can help

Kids Caloric Needs

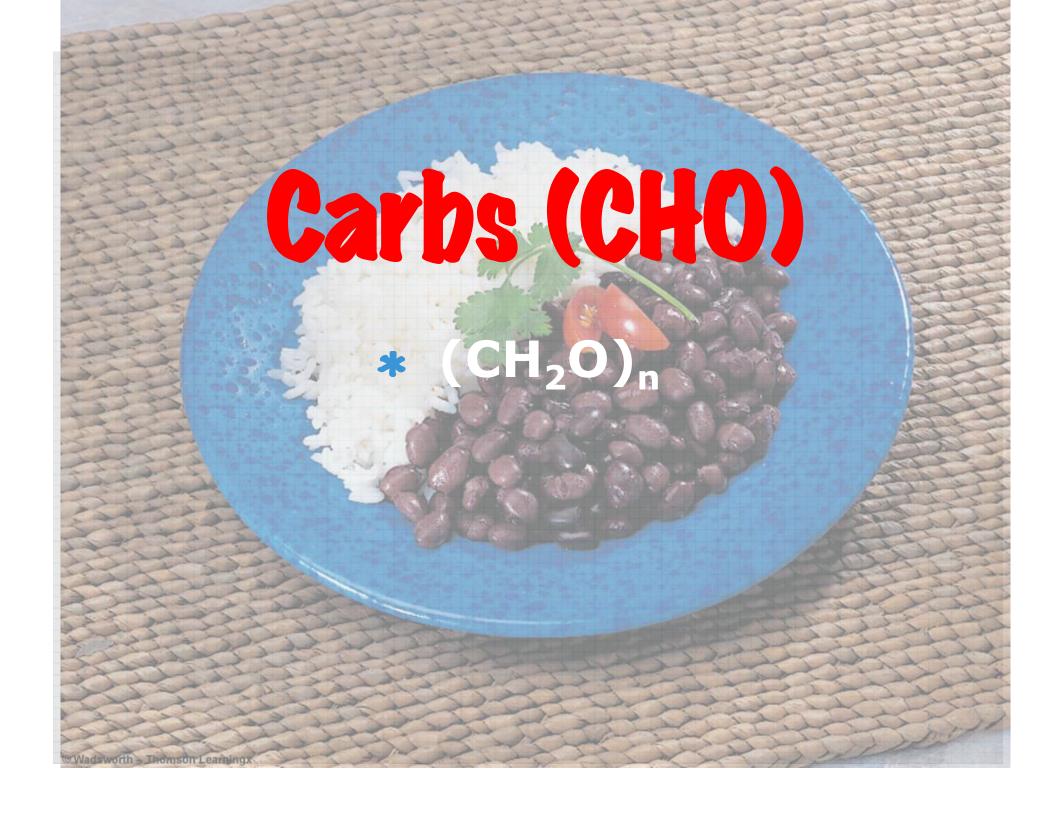
- * Moderately active
- * 9-13 yr old girl, 1600-2000 Kcal/day
- * 9-13 yr old boy 1800-2200
- * 13-18 yr old boy 2400-2800

Nutrients

- * The basic building blocks of food
- * Structure and function
- * Digestion and metabolism

- * carbs (4 kcals per gm)
- * protein (4 kcal per gm)
- * fats (9 kcal per gm)
- * fiber
- * water
- * vitamins and minerals

New Discoveries

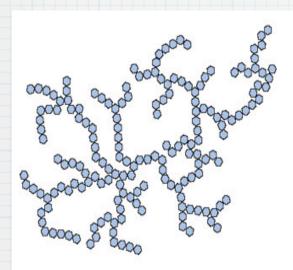


Nutrient Structure

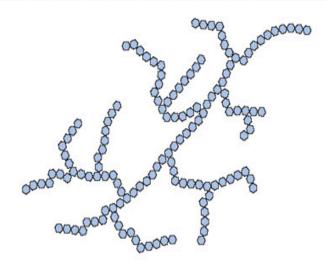
The four main types of atoms found in nutrients are hydrogen (H), oxygen (O), nitrogen (N), and carbon (C).

Each atom has a characteristic number of bonds it can form with other atoms.

Notice that in this simple molecule of ethyl alcohol, each H has one bond, O has two, and each C has four.


Simple Sugars

Carbonydrates


- Polysaccharides
 - -Glycogen
 - **Starches**
 - **Fibers**

The Structure of Starches

Glycogen

A glycogen molecule contains hundreds of glucose units in long, highly branched chains.

Starch (amylopectin)

Starch (amylose)

A starch molecule contains hundreds of glucose molecules in either occasionally branched chains (amylopectin) or unbranched chains (amylose).

Non digestible starches

- (these include the prebiotics)
- Fibers
 - -Cellulose
 - -Hemicelluloses
 - **Pectins**
 - -Gums and mucilages
 - -Lignin
 - Resistant starches

What is this?

www.shutterstock.com · 24389785

Insoluble fibers

- Fibers
 - Insoluble fibers
 - Nonviscous
- (Phytic acid)

- Mouth
 - -Salivary amylase
- Stomach
 - -Fibers and satiety

- Small intestine
 - -Maltase, sucrase, lactase
- Pancreas
 - -Pancreatic amylase

STARCH

Mouth and salivary glands

The salivary glands secrete saliva into the mouth to moisten the food. The salivary enzyme amylase begins digestion:

Starch amylase small polysaccharides, maltose

Stomach

Stomach acid inactivates salivary enzymes, halting starch digestion.

Small intestine and pancreas

The pancreas produces an amylase that is released through the pancreatic duct into the small intestine:

Starch Pancreatic Small polysac-charides, mallose

Then disaccharidase enzymes on the surface of the small intestinal cells hydrolyze the disaccharides into monosaccharides:

Maltose maltase glucose glucose
Sucrose sucrase fructose glucose
Lactose lactase galactose glucose

Intestinal cells absorb these monosaccharides.

FIBER Mouth The mechanical action of the mouth crushes and tears fiber in food and mixes it with saliva to moisten it for swallowing. Salivary -Mouth glands Stomach (Liver) Fiber is not digested, and it (Gallbladder) delays gastric emptying. Pancreas Small intestine Fiber is not digested, and it delays absorption of other nutrients. Large intestine Most fiber passes intact through intestine the digestive tract to the large intestine. Here, bacterial Large enzymes digest fiber: Bacterial Some fiber Fatty acids, gas Fiber holds water; regulates bowel activity; and binds substances such as bile, cholesterol, and some minerals, carrying them out of the body.

@ 2006 Wadsworth - Thomson

Large intestine
 Fermentation of viscous fibers

Water, gas, short-chain fatty acid production

FIBER

Fiber digestion

Mouth

The mechanical action of the mouth crushes and tears fiber in food and mixes it with saliva to moisten it for swallowing.

Stomach

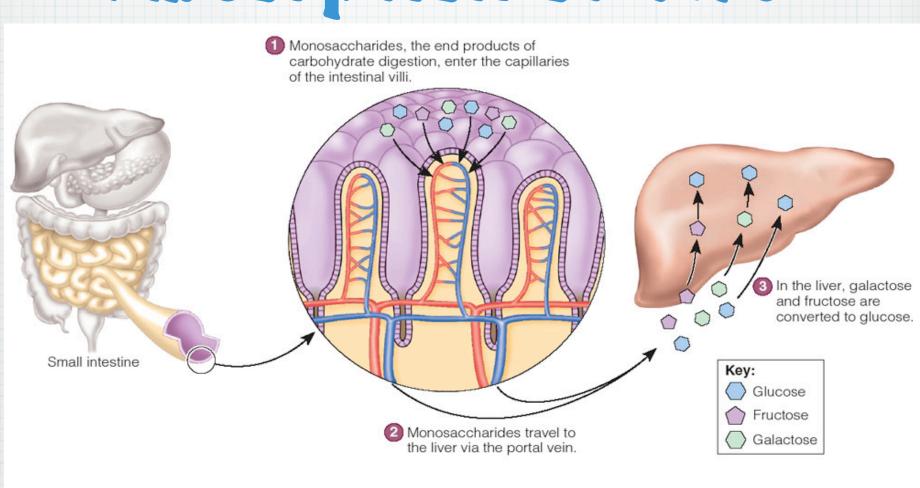
Fiber is not digested, and it delays gastric emptying.

Small intestine

Fiber is not digested, and it delays absorption of other nutrients.

Large intestine

Most fiber passes intact through the digestive tract to the large intestine. Here, bacterial enzymes digest fiber:


Some fiber

Bacterial

enzymes
Fatty acids,
gas

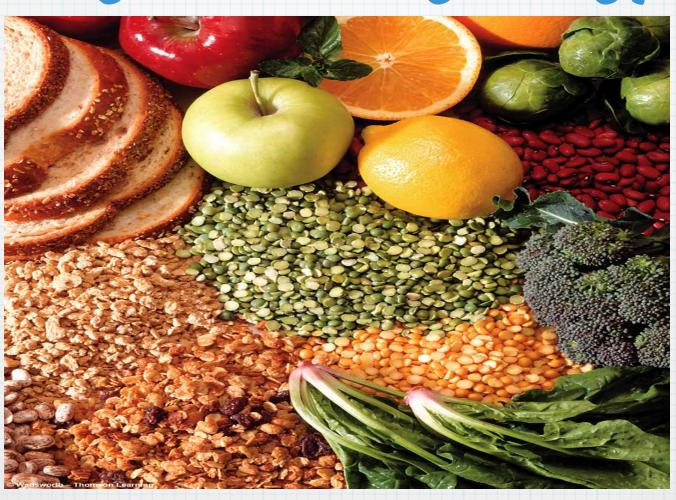
Fiber holds water; regulates bowel activity; and binds substances such as bile, cholesterol, and some minerals, carrying them out of the body.

Absorption of CHO

© 2006 Wadsworth - Thomson

Digestion Problems

- * Lactose Intolerance
- * Leaky guts


Energy in the Body

Energy

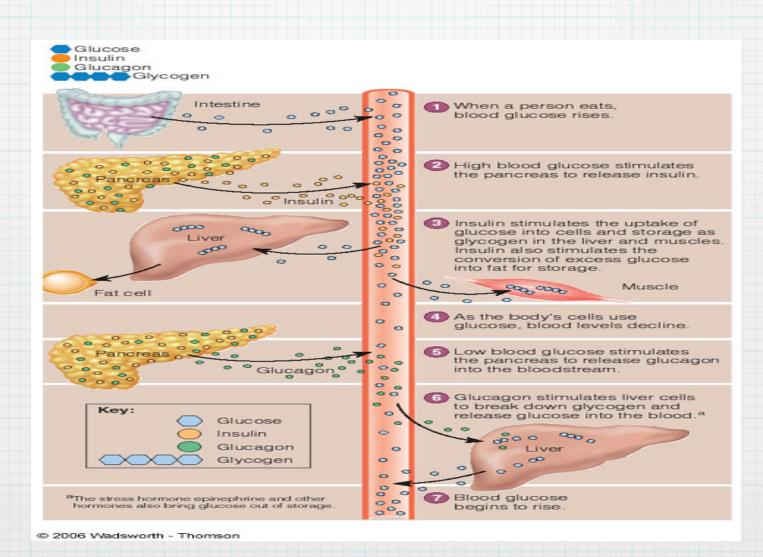
Glycoproteins

Glycolipids

Using and storing energy

Other sources of energy

- Making glucose from protein
 - Gluconeogenesis
 - Protein-sparing action of carbohydrates


Fat turned into energy

- Making ketone bodies from fat fragments
- Ketone bodies
- Ketosis
- Acid-base balance

Keeping the blood sugar constant

- Regulating hormones
 - -*Insulin
 - -*Glucagon
 - *Epinephrine

How digestion works

Clycemic response to foods

LOW

Peanuts

Soybeans

Cashews, cherries

Barley Milk, kidney beans, garbanzo beans

Butter beans

Yogurt
Tomato juice, navy beans, apples, pears
Apple juice
Bran cereals, black-eyed peas, peaches
Chocolate, pudding
Grapes
Macaroni, carrots, green peas, baked beans
Rye bread, orange juice
Banana
Wheat bread, corn, pound cake
Brown rice
Cola, pineapple

lce cream Raisins, white rice Couscous

White bread Watermelon, popcorn, bagel

Pumpkin, doughnut Sports drinks, jelly beans

Cornflakes

Baked potato

Glucose

HIGH

@ 2006 Wadsworth - Thomson

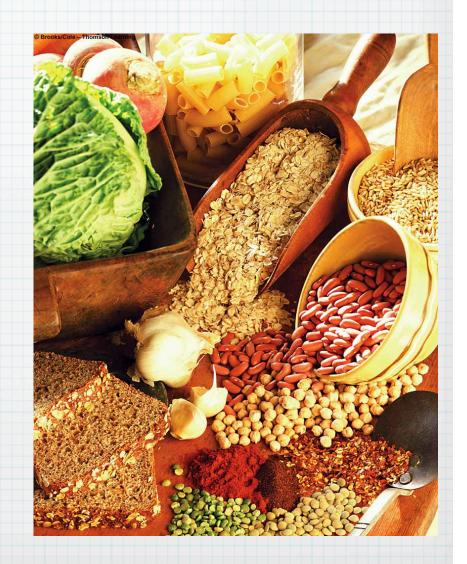
Sugars in foods

TABLE 4-1 Sample Nutrients in Sugar and Other Foods

The indicated portion of any of these foods provides approximately 100 kcalories. Notice that for a similar number of kcalories and grams of carbohydrate, milk, legumes, fruits, grains, and vegetables offer more of the other nutrients than do the sugars.

	Size of 100 kcal Portion	Carbohydrate (g)	Protein (g)	Calcium (mg)	lron (mg)	Vitamin A (µg)	Vitamin C (mg)
Foods							
Milk, 1% low-fat	1 c	12	8	300	0.1	144	2
Kidney beans	½ c	20	7	30	1.6	0	2
Apricots	6	24	2	30	1.1	554	22
Bread, whole wheat	1½ slices	20	4	30	1.9	0	0
Broccoli, cooked	2 c	20	12	188	2.2	696	148
Sugars	989330	2775	995	0	12	0.0	0.0
Sugar, white	2 tbs	24	0	trace	trace	0	0
Molasses, blackstrap	2½ tbs	28	0	343	12.6	0	0.1
Cola beverage	1 c	26	0	6	trace	0	0
Honey	1½ tbs	26	trace	2	0.2	0	trace

Message:


Eat Whole Foods

Recommended upper limit for sugar intake

- DRI
 - No more than 25% of total daily energy intake

Starch and Fiber

- * Health benefits
- * GI
- * Heart
- * Diabetes
- * Cancer
- * Weight management

Functions of Fiber

Lower blood cholesterol

- Slow glucose absorption
- Slow transit of food through upper GI tract

More Fiber Functions:

- Holds moisture in stools, softening them
- Yield small fat molecules that the colon can use for energy

Fiber Sources

- Brown rice, fruits, legumes, seeds, vegetables, wheat bran, whole grains
- Extracted and used as food additives

Fn of Insoluble Fiber

- Increased fecal weight
- Speeds fecal passage through colon
- Provides bulk and feelings of fullness

Non viscous functions

- Alleviate constipation
- Lower risks of diverticulosis, hemorrhoids, appendicitis
- May help with weight management

Intake of starches and fiber

- RDA for carbohydrate
 - -130 g/day
 - 45% 65% total daily energy intake
- Daily Value: 300 g/day
- 25gm/day of fiber
- (14gm/1000kcal)

Sugar Replacers

- Stevia Non caloric
- Xylitol 2/3 of the calories of sugar. Glycemic Index of 7 and good for dental health

Other Sugars

- * Honey
- *Agave
- *Coconut sugars.....
- *All in moderation

Sugar Substitutes

TABLE H4-1	Sweeteners				
Sweeteners	Relative Sweetness ^a	Energy (kcal/g)	Acceptable Daily Intake	Average Amount to Replace 1 tsp Sugar	Approved Uses
Approved Sweete Saccharin	ners 450	0	5 mg/kg body weight	12 mg	Tabletop sweeteners, wide range of foods, beverages, cosmetics, and pharmaceutical products
Aspartame	200	4 ^b	50 mg/kg body weight ^c Warning to people with PKU: Contains phenylalanine	18 mg	General purpose sweetener in all foods and beverages
Acesulfame-K	200	0	15 mg/kg body weight ^d	25 mg	Tabletop sweeteners, puddings, gelatins, chewing gum, candies, baked goods, desserts, alcoholic beverages
Sucralose	600	0	5 mg/kg body weight	6 mg	Carbonated beverages, dairy products, baked goods, coffee and tea, fruit spreads, syrups, tabletop sweeteners, chewing gum, frozen desserts, salad dressing
Neotame	8000	0	18 mg/day	0.5μg	Baked goods, nonalcoholic beverages, chewing gum, candies, frostings, frozen desserts, gelatins, puddings, jams and jellies, syrups
Tagatose	0.8	1.5	7.5 g/day	1 tsp	Baked goods, beverages, cereals, chewing gum, confections, dairy products, dietary supplements, health bars, tabletop sweetener
Sweeteners with A Alitame	Approval Pending 2000	4 ^e	-		Proposed Uses Beverages, baked goods, tabletop sweeteners, frozen desserts
Cyclamate	30	0	_		Tabletop sweeteners, baked goods

More...

H JJGAT	4-3	Sugar	Replacers	
Sugar Alcohols		lative etness ^a	Energy (kcal/g)	Approved Uses
Isomalt	().5	2.0	Candies, chewing gum, ice cream, jams and jellies, frostings, beverages, baked goods
Lactitol	(0.4	2.0	Candies, chewing gum, frozen dairy desserts, jams and jellies, frostings, baked goods
Maltitol).9	2.1	Particularly good for candy coating
Mannitol	(0.7	1.6	Bulking agent, chewing gum
Sorbitol	(0.5	2.6	Special dietary foods, candies, gums
Xylitol	1	1.0	2.4	Chewing gum, candies, pharmaceutical and oral health products

^aRelative sweetness is determined by comparing the approximate sweetness of a sugar replacer with the sweetness of pure sucrose, which has been defined as 1.0. Chemical structure, temperature, acidity, and other flavors of the foods in which the substance occurs all influence relative sweetness.

Mindful eating break

- * Select 1 item to chew on-where does it come from, how many hands touched this?
- * Place it in your mouth
- * Feel the texture, taste
- * Chew for 1 minute

FATS

- Triglycerides
- Fats and oils

- Phospholipids
- Sterols

Fatty acids

Saturated vs. unsaturated

Point of saturation

- Point of saturation
- Degree of saturation
 - Saturated fatty acid
 - Monounsaturated fatty acid
 - -Polyunsaturated fatty acid

Location of double bonds

- Location of double bonds
 - Omega number
 - Omega-3 fatty acid
 - Omega-6 fatty acid

Degree of unsaturation

- Degree of unsaturation revisited
 - -Firmness
 - -Stability
 - Oxidation
 - Antioxidants

cis vs. trans

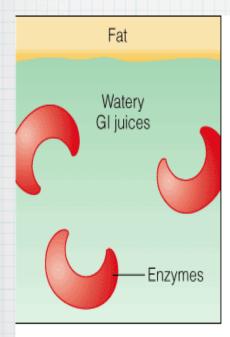
cis-fatty acid

A *cis*-fatty acid has its hydrogens on the same side of the double bond; *cis* molecules fold back into a U-like formation. Most naturally occuring unsaturated fatty acids in foods are *cis*.

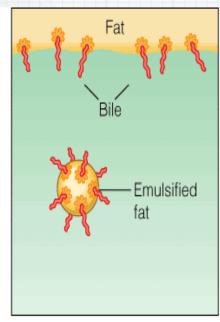
trans-fatty acid

A *trans*-fatty acid has its hydrogens on the opposite sides of the double bond; *trans* molecules are more linear. The *trans* form typically occurs in partially hydrogenated foods when hydrogen atoms shift around some double bonds and change the configuration from *cis* to *trans*.

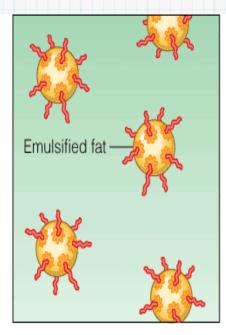
© Wadsworth - Thomson Learning

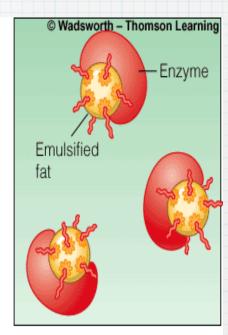

Roles of sterols

- Bile acids
- Sex hormones
- Adrenal hormones
- Vitamin D


Fat digestion

- *Hydrolysis
- *Triglycerides
- *Monoglycerides
- *Fatty acids
- *Glycerol


Fat digestion


In the stomach, the fat and watery GI juices tend to separate. The enzymes in the GI juices can't get at the fat.

When fat enters the small intestine, the gallbladder secretes bile. Bile has an affinity for both fat and water, so it can bring the fat into the water.

Bile's emulsifying action converts large fat globules into small droplets that repel each other.

After emulsification, more fat is exposed to the enzymes, making fat digestion more efficient.

Fat digestion

- Small intestine
 - Pancreatic lipases
 - -Intestinal lipases

Triglycerides

- Fat stores
 - **Energy**
 - **Protection**
 - -insulation

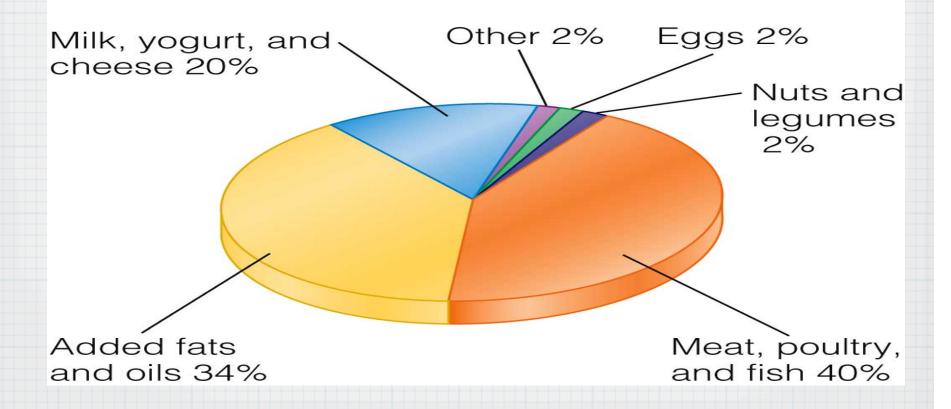
Essential acids

fatty

 Linoleic acid and the omega-6 family
 Arachidonic acid

Linolenic to EPA, DHA

- Linolenic acid and the omega-3 family
 - EPA = eicosapentaenoic acid
 - DHA = docosahexaenoic
 acid


Sources of omega 3's

TAPLE 5-2	Sources of Omega Fatty Acids				
Omega-6					
Linoleic acid	Vegetable oils (corn, sunflower, safflower, soybean, cottonseed), poultry fat, nuts, seeds				
Arachidonic acid	Meats, poultry, eggs (or can be made from linoleic acid)				
Omega-3					
Linolenic acid	Oils (flaxseed, canola, walnut, wheat germ, soybean) Nuts and seeds (butternuts, flaxseeds, walnuts, soybean kernels) Vegetables (soybeans)				
EPA and DHA	Human milk				
	Pacific oysters and fish ^a (mackerel, salmon, bluefish, mullet, sablefish, menhaden, anchovy, herring, lake trout, sardines, tuna) (or can be made from linolenic acid)				

^aAll fish contain some EPA and DHA; the amounts vary among species and within a species depending on such factors as diet, season, and environment. The fish listed here except tuna provide at least 1 gram of omega-3 fatty acids in 100 grams of fish (3.5 ounces). Tuna provides fewer omega-3 fatty acids, but because it is commonly consumed, its contribution can be significant.

Sources of Fats

Note that fruits, grains, and vegetables are insignificant sources, unless saturated fats are intentionally added to them during preparation.

25-35% from cals

- *avoidance of saturated
- * high fat meat and dairy
- * trans fats in processed and deep fried

THELL H5-1 Major Sources of Various Fatty Acids

Healthful Fatty Acids

Omega-6 Polyunsaturated			
Margarine (nonyhydrogenated)			
Oils (corn, cottonseed, safflower, soybean)			
Nuts (walnuts)			
Mayonnaise			
Salad dressing Seeds (pumpkin, sunflower)			

Bad fats

Harmful Fatty Acids

C	2	+		r:	at		d
	а	L	u		аı	·C	u

Bacon

Butter

Chocolate

Coconut

Cream cheese

Cream, half-and-half

Lard

Meat

Milk and milk products (whole)

Oils (coconut, palm, palm kernel)

Shortening

Sour cream

Trans

Fried foods (hydrogenated shortening)

Margarine (hydrogenated or partially

hydrogenated)

Nondairy creamers

Many fast foods

Shortening

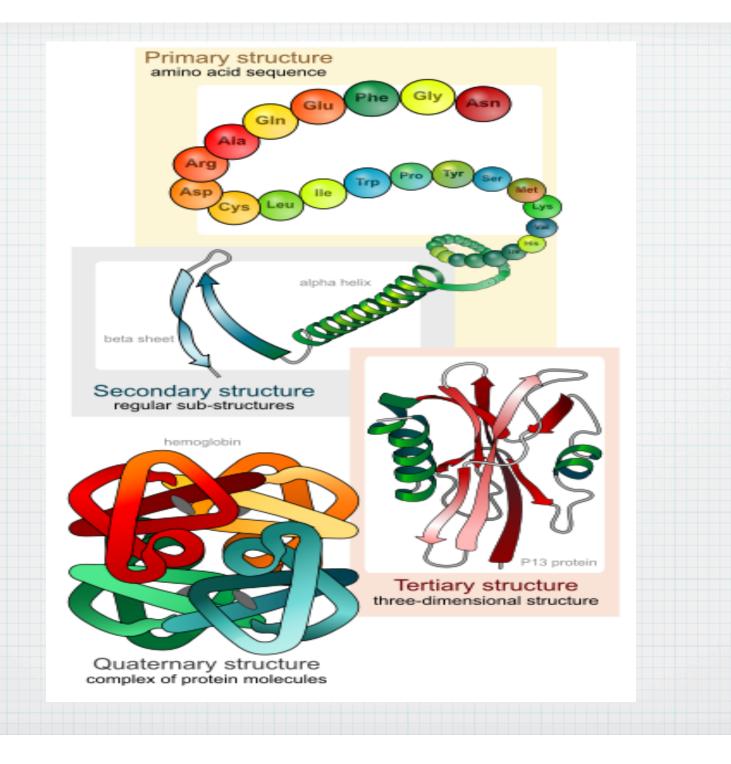
Commercial baked goods (including doughnuts,

cakes, cookies)

Many snack foods (including microwave popcorn,

chips, crackers)

NOTE: Keep in mind that foods contain a mixture of fatty acids.


TABLE H5-2 Replacing Saturated Fat with Unsaturated Fat

Examples of ways to replace saturated fats with unsaturated fats include sautéing foods in olive oil instead of butter, garnishing salads with sunflower seeds instead of bacon, snacking on mixed nuts instead of potato chips, using avocado instead of cheese on a sandwich, and eating salmon instead of steak. Portion sizes have been adjusted so that each of these foods provides approximately 100 kcalories. Notice that for a similar number of kcalories and grams of fat, the first choices offer less saturated fat and more unsaturated fat.

	Total Fat (g)	Saturated Fat (g)	Unsaturated Fat (g)
Olive oil vs. butter	11 vs. 11	2 vs. 7	9 vs. 4
Sunflower seeds vs. bacon	8 vs. 9	1 vs. 3	7 vs. 6
Mixed nuts vs. potato chips	9 vs. 7	1 vs. 2	8 vs. 5
Avocado vs. cheese	10 vs. 8	2 vs. 4	8 vs. 4
Salmon vs. steak	4 vs. 5	1 vs. 2	3 vs. 3
Totals	42 vs. 40	7 vs. 18	35 vs. 22

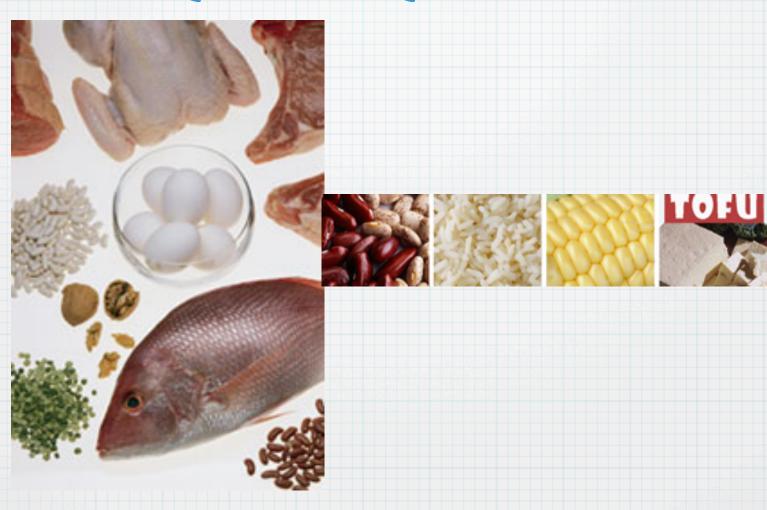
Reducing fats

- * In baking-try tofu, applesauce, pureed prunes.
- * In sauces- non fat yogurt, tofu

Proteins

- * Each have C, H and NH2(amino group)
- * Made up of Amino acids chains some essential (the body cannot make these)
- * Antibodies, enzymes, hormones, structural (muscle), storage (albumin), transport (hemoglobin)

More protein functions:


*regulate pH balance (protein excess produced an acid residue)

*regulate fluids

Protein needs

- * about .8-1 gm per kg of body weight
- * average 150# needs 68 gms
- * 9-13 yr olds need about 34 gm
- * about 15-20% of calories

Types of protein

Complete and incomplete proteins

- * egg and casein best absorbed
- * soy most highly of vegetable protein

Animal vs. vegetable protein

- * Choose lowest fat, unless fish
- * vegetable protein has fiber!

Take home

- * most Americans eat more protein than needed
- * you don't need to combine incomplete proteins at a meal, but do eat a variety
- * many cuisine combine foods to produce complete protein e.g. rice and beans

Vitamins and Minerals

- * http://kidshealth.org/teen/misc/ vitamin_chart.html
- * http://kidshealth.org/teen/misc/ mineral_chart.html

From A to Z

- * Vitamins water soluble and fat soluble
- * Become active in the body playing many functions
- * Minerals-structure and function

Phytonutrients

*Substances in plant foods that promote health

Different types

* Carotenoid

Common Food Sources

alpha-carotene carrots

beta-carotene leafy green and yellow vegetables (eg. broccoli, sweet potato, pumpkin, carrots)

beta-cryptoxanthin citrus, peaches, apricots

Lutein leafy greens such as kale, spinach, turnip greens

Lycopene tomato products, pink grapefruit, watermelon, guava

Zeaxanthin green vegetables, eggs, citrus

Carotenoids Flavonoids (Polyphenols), including Isoflavones (Phytoestrogens) Inositol Phosphates (Phytates) Lignans (Phytoestrogens) Isothiocyanates and Indoles Phenols and Cyclic Compounds Saponins Sulfides and Thiols Terpenes

Resource info:

* http://www.webmd.com/diet/ phytonutrients-faq

Beneficial bacteria

- * help with digestion
- * help immune function
- * may regulate caloric absorption and weight

Sources

- * cultured foods- miso, kimchee, sauerkraut
- * yogurts, femented milks
- * supplements

Take Home

*Eat from the rainbow *Eat some cultured foods

Putting into practice what is in our food

- * Read labels
- * evaluate recipes
- * food as medicine- what we eat does affect us.
- * how does culture affect food patterns
- * Looking at disease states and nutrition

Mahalo!

* This is a very big topic and we just got a taste today. I hope you will be motivated to seek out more information.