

Ka'umana, Kapiolani, Kalaniana'ole, EB DeSilva and Ha'aheo Elementary Schools Content Area: Interdisciplinary/Science Grade Level: <u>6th</u>

Ka'umana, Kapiolani, Kalaniana'ole, EB DeSilva and Ha'aheo Elementary Schools Content Area: Interdisciplinary/Science Grade Level: <u>6th</u>

General Learner Outcomes	 GLO#1: Self-Directed Learner: Students will be able to complete a series of experiments that helps them explore the characteristics of different forms of energy and other forces. Students will use the textbook and other resources to complete individual class and homework reading assignments (both science and social studies). GLO#2: Community Contributor: Students will work together in groups or pairs to complete experiments. GLO#3: Complex Thinker: Students will use their problem solving, math and writing skills to investigate the properties of forces. GLO#4: Quality Producer: Students will create math products (graphs, data tables, charts) that enhance their lab/experiment reports. GLO#5: Effective Communicator: Students will listen, discuss and record information from their different lessons through oral, written and math pieces that illustrate concepts they have learned about forces. GLO#5: Effective and Ethical User of Technology: Students will use a variety of scientific equipment and tools to safely collect data from their experiments.
Assessments	Summative = lab experiment reports completed, Reading Support & Homework worksheets

Standards & Benchmarks

Big Idea(s) / Major Understanding(s): Students will understand that...

Matter and energy transfer through and between organisms and their physical environment.

There are different kinds of waves.

The energy of vibrations produces waves that travel away.

There are different forms of energy.

Energy can be transformed and transferred.

Energy can be conserved.

Electricity can produce magnetism, and magnetism can create electricity.

Forces affect objects.

Forces are all around us.

Forces affect objects in several ways, even when objects are stationary.

Forces affect an object's movement.

- 6.6.2 Energy and its Transformation Describe the different types of energy transformations
- 6.6.3 Energy and its Transformation Explain how energy can change forms and is conserved

• 6.6.4 Energy and its Transformation

• 6.1.1 **Securities and give** examples of different types of energy waves Formulate a testable hypothesis that can be answered through a controlled experiment

• 6.1.2 Scientific Inquiry

Use appropriate tools, equipment, and techniques safely to collect, display, and analyze data

- 6.2.1 Science, Technology, and Society Explain how technology has an impact on society and science
- 6.2.2 Science, Technology, and Society Explain how the needs of society have influenced the development and use of technologies
- 6.7.1 Force and Motion
 Describe examples of how forces affect an object's motion
- 6.6.1 Energy and its Transformation Compare how heat energy can be transferred through conduction, convection, and radiation
- 6.6.2 Energy and its Transformation

Ka'umana, Kapiolani, Kalaniana'ole, EB DeSilva and Ha'aheo Elementary Schools Grade Level: 6th **Content Area: Interdisciplinary/Science**

Sample Performance Rubrics

Торіс	Force and Motion		
Benchmark SC.6.7.1	Describe examples of how	forces affect an object's mo	otion
Sample Performance Assessment (SPA)	The student: Uses Newton's Laws of Motion to describe how forces affect an object's motion (e.g., constant speed in a straight line unless a force is acting upon it).		
Rubric			
Advanced	Proficient	Partially Proficient	Novice
Explain, with supporting evidence and Newton's Laws, how forces affect an object's motion	Describe examples of how forces affect an object's motion	Identify the forces that affect an object's motion	Identify examples of forces
Торіс	Forces of the Universe		
Benchmark SC.6.7.2	Explain that electric currents can produce magnetic effects and that magnets can cause electric currents		
Sample Performance Assessment (SPA)	The student: Demonstrates and explains that magnets can produce electric currents and that electric currents produce a magnetic field.		
Rubric	Rubric		
Advanced	Proficient	Partially Proficient	Novice
Explain, and provide real world applications, that electric currents can produce magnetic effects and that magnets can cause electric currents	Explain that electric currents can produce magnetic effects, and that magnets can cause electric currents	Describe that electric currents can produce magnetic effects, or that magnets can cause electric currents	Recognize electric currents and magnetic effects
Торіс	Energy and its Transformat	tion	
Benchmark SC.6.6.1	Compare how heat energy can be transferred through conduction, convection, and radiation		
Sample Performance Assessment (SPA)	The student: Compares how heat energy is transferred and makes comparisons between conduction, convection, and radiation.		
Advanced	Proficient	Partially Proficient	Novice
Describe and compare how heat energy can be transferred through conduction, convection, and radiation and make a connection to real world situations	Compare how heat energy can be transferred through conduction, convection, and radiation	Describe how heat energy can be transferred through conduction, convection, and radiation	Recognize that heat energy can be transferred
Benchmark SC.6.6.2	Describe the different types	s of energy transformations	
Sample Performance Assessment (SPA)	The student: Describes a variety of energy transformations (e.g., heat energy into mechanical energy; chemical energy into light energy; electrical energy into		

Ka'umana, Kapiolani, Kalaniana'ole, EB DeSilva and Ha'aheo Elementary Schools

Content Area: Interdisciplinary/Science

Grade Level: 6th

	magnetic energy).		
Advanced	Proficient	Partially Proficient	Novice
Explain the different types of energy transformations and give examples of their application	Describe the different types of energy transformations	Identify, with assistance, different types of energy transformations	Recognize that energy can be transformed
Торіс	Energy and its Transformation		
Benchmark SC.6.6.3	Explain how energy can change forms and is conserved		
Sample Performance Assessment (SPA)	The student: Explains the conservation of energy by comparing the input and output of energy of a specific device or process (e.g., throwing a ball against a wall).		
Rubric			
Advanced	Proficient	Partially Proficient	Novice
Provide a detailed explanation of the conservation of energy with supporting evidence	Explain how energy can change forms and is conserved	Describe, with assistance, how energy can change forms and is conserved	Recognize that energy is conserved

Lesson Plan Summary

(yellow highlighted lessons needed for exemplars and unit assessment)

Title	Basic goals of lesson – Students will be able to	
Chapter 14 Energy – Pre Test		
What are Some	Read potential and kinetic energy pp. 528-529 (don't do the beginning of the	
Forms of	chapter demo)	
Energy?	Energy Transformation – (look in TG at the transparencies)	
Lesson #1	Law of Conservation of Energy –	
	Graphic Organizer p. 533 "Reading Review"	
	RS 112-113 Reading Support	
What Are	Making Waves experiment (see the lab manual) pp. 535-537 Some ideas	
Waves?	could be jump rope (one kid at each end) ask them to model the picture of	
Lesson #2	the wave on p. 537	
	Energy in waves is not a physical thing – but it is a force that causes physical	
	things to move.	
	Waves and structure of the wave (height, length, crest, trough)	
	Light Energy from the Sun pp. 542	
	RS114-115	
AIMS	History of Light booklet (4 pages)	
AIMS	Model of parts of the light wave	
Light Waves	Materials: index cards, tape, ruler and student page	
	Move through the Connected Learning questions at the end.	
AIMS	Model of light waves with color integrated (spectrum)	
Roy G Biv	Uses the same materials as the Light Waves experiment	

Ka'umana, Kapiolani, Kalaniana'ole, EB DeSilva and Ha'aheo Elementary Schools Content Area: Interdisciplinary/Science Grade Level: <u>6th</u>

Chapter 14 Energy – Post Test		
	mation only – (heat) no pre/post test	
How is Thermal	Formative Assessment probe – The Mitten	
Energy	$\frac{1}{2}$ sheet in notebook – do before other work.	
transferred?	RS 119-120 - do	
Lesson 1	Now I've learned – write in their notebook next to their "The Mitten" pre-	
(2 days)	assessment, what they now know	
Chapter 16	Pre-Test	
FORCES GE	TTING SOMETHING TO MOVE FASTER, SLOW DOWN OR	
	G (PUSH/PULL, FRICTION)	
	TS THINGS MOVING? A FORCE	
Harcourt text	Refer back to Chapter 14 – lesson on kinetic and potential energy because	
Chapter 14	motion is related to kinetic energy	
AIMS	Rubber Band Shoot – potential and kinetic energy	
AIMS	Magnetic Potential – potential and kinetic energy model	
AIMS	Frog Legs – conversion of potential to kinetic energy	
optional		
LESSON 1	Defines what is a force, velocity and inertia (not moving)	
How Do Forces	Do Lesson Quick Study wkst	
Affect Us?		
Lesson 2	Defines balanced/unbalanced forces and friction	
How Do Forces	Do Lesson Quick Study wkst	
Interact?		
AIMS	Tug Teams – experiment with balanced and unbalanced forces	
AIMS	Air Glider – Key vocabulary is covered on the student pages (force &	
	friction) and then extension to hover craft	
	2-3 periods to prepare and then do the experiment	
Lesson 3	Defines weight/mass, gravity	
What is	Do Lesson Quick Study wkst	
Gravitation		
Force?		
Chapter 16	Post-Test	
Chapter 17 – Sim	ple Machines (not pre/post test)	
Use the simple ma	Use the simple machines rubber band booklets to discuss the different simple machines. The	
AIMS experiment	s are dealing only with the inclined plane	
Lesson #2 "What	are Inclined Planes?" Check out lesson resources (transparencies, etc)	
AIMS	Use Question and Learning Goals – have students copy into their science	
Slip & Slide	notebooks – at the end of the lesson, have students answer the "Connected	
PGS 21-26	Learning" questions	
AIMS	Use Question and Learning Goals – have students copy into their science	
The Plane Truth	notebooks – at the end of the lesson, have students answer the "Connected	

Ka'umana, Kapiolani, Kalaniana'ole, EB DeSilva and Ha'aheo Elementary Schools Content Area: Interdisciplinary/Science Grade Level: <u>6th</u>

PGS 197-205	Learning" questions
AIMS	Use Question and Learning Goals – have students copy into their science
How heavy How	notebooks – at the end of the lesson, have students answer the "Connected
far?	Learning" questions
PGS 37-43	

Materials & Supplies (AIMS lessons)

Rubber Band	safety goggles – groups of 3-4
Shoot	rubber bands (rubber band ball – all the same size), metric rulers/measuring
	tapes, calculator & activity pages
Frog Legs	2 sheets of transparency film for copy machine (frog filler – guts)
0 0	cardstock and regular paper (one frog pattern per child)
	student activity sheet, meter stick or tape measure
Tug Teams	thread, paper clips (10 per group), masking tape, student activity page with
	"tug team strips"
Air Glider	For each group:1
	2 oz plastic water bottle, pushpin, scissors, clay
	OPTIONAL materials instead of above: glue a wooden spool (Ben Franklin
	crafts) onto the CD, glue a bottom to cover the hole on the top of the spool,
	7-9" balloons, recycled cd's, meter stick, vocabulary student sheet
Slip & Slide	For each group:
Shp & Shue	Scissors, glue, tape, flat 30cm ruler, 35mm film canister, 10 pennies,
	vegetable oil, 2.5 x 10 cm strips of paper, transparency, aluminum foil, fine
	sandpaper, hand lens (optional)
How Hoovy	For each student: pg 24-25
How Heavy,	For each group:
How Far?	small car with non-friction wheels (hotwheels, toy cars), meter tape, lots of
	space (4 meters of space), scissors, glue, tape, balance with weights, speed
	wheels track copied on cardstock (3 pgs of tracks), set of textbooks to
	make the same height (13 cm), student activity/data p. 39
The Plane Truth	For each group:
OPTIONAL	2 wooden meter sticks, ½ pound margarine tub, string, ruler, books (stacked
	20 cm high), rubber bands 6-8cm long, 2 large paper clips, colored pencils
	and 300-500 g masses
	<u>Centers</u> : 5 x 100 cm strip of tagboard, 2 sheets of sandpaper, 1 balance,
	wax paper, cooking spray, plastic coated playing cards, 1 mini car and
	rubber bands
	For each student: pg 200-204